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SUMMARY

Doppler tracking is a common procedure which can be implemented by a multitude
of techniques. Also, it is well known that in the absence of a velocity change in the receiver,
the solution track is not unique. This paper examines the solution set of the Doppler
tracking problem, presenting several new results and placing some of the lore in a more
rigorous setting. In particular, it is shown that (in two dimensions) for an isovelocity
receiver the solution is determined up to a rotation and reflection in the receiver's coordi-
nate system. If a single velocity change is present, then there are exactly two solutions.
Generalizations to three dimensions are also provided.
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1. INTRODUCTION

This short paper is concerned with tile following classical Doppler tracking problem:
Given a source moving with constant velocity and emitting a tone of known frequency fo.
and a receiver following a known track with received frequencies fi at times ti, determine
the track of the source (see Figure Ia). Assuming the data are exact, we wish to address the
question, what is the nature of the solution set of the above problem? And, specifically.
when is the solution unique" Although some of the results presented here are well known
in the lore of Doppler tracking, to the author's knowledge a rigorous derivation has not
appeared in the literature. Other results are new.

Before proceeding. it is both mathematically and descriptively convenient to trans-
form to a coordinate system in which the receiver is at rest (Figure lb). For this to be an
advantage, we must assume that the Doppler shift depends only on the relative velocity
V = vs - Vr of the source and the receiver, an approximation which is valid as long as
IV IC c where c is the propagation speed of the signal. In that case, the received frequency
is given by

fi= fo(I cos ) (1) 

with 0i the angle between V and the position vector as illustrated in Figure lb. We begin
this study with the case in which the receiver's track is a single segment of constant
velocity r
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Figure I. Example of source (s) and receiver (r) geometry: (a) fixed coordinate system,
(b) coordinates relative to receiver.



2. ISOVELOCITY RECEIVER

A solution track takes the form illustrated in Figure 2. It is immediately clear that
given one solution, an arbitrary rotation of the coordinate axes will yield another: thus, the
solution set is infinite. This leads rather naturally to the question of whether tile solution is

unique up to a rotation and reflection: i.e.. are the speed IVI, the distance to CPA (closest
point of approach) R, and to the time of CPA, uniquely determined by the Doppler data'?
Since there are three unknowns, IVI, R. and to, we suspect that three data points consisting
of measurement times ti and corresponding frequencies f, i = 1,2.3. will determine the
solution(s). (it is clear that if the source is traveling directly away from the receiver the
solution remains indeterminate, and we therefore exclude that case: i.e.. we assume f fj
for i j.)

Define tile variables

A
At tt o  (2)

and

SIVl Ati
qi R 3)

so that

'i
Cos i (4)

I +q."

O10

SOURCE

miv e CorIVER

Figure 2. Geometry in receiver's coordinate system for isovelucity receiver.



Equation (1) becomes

to  Ivl qiA fi f i - f o = C ! Iq i= i- ,3 ( 5 )

and (3) implies

t - t1 q - q(6)
t3-t'I q3 - q

Although this formulation has increased the number of unknowns to four (qi and I). it
shall shortly enable us to eliminate two.

We now introduce the variables

A ql
q2

(7)
A q,

y=
q3

and letting

A Af2a A Af3  (8)

we have from (5)

&(sgn x)

(9)

/ -=(sgnyl +q)

T T '



or

+ q Q2 (x 2 + qpj

l+q (y+qj) 110)

Eliminating q2 yields

(1 -02)02 y2 -0 (1 -02)x2=02 2 C11

Also, the substitution of(7) into (6) produces

P= y -X _. .y 121
x - xy

or, after some rearranging.

(x - (y + ) = P ( 3)
ip (1 p)

Thus, the problem has been reduced to solving the two simultaneous quadratics (11) and
(13) for x and y where a, g, and p are determined from the data t, Afi. i = 1 .23.

The sign of qi is known from 15) which restricts the solution(s) to one quadrant
(cf. (7)). The solution(s) will be the intersection(s) of a section of a hyperbola (eq. (13)) with
a hyperbola or ellipse (eq. (11)). A detailed analysis is found in Appendix A. If the Afi are
all of the same sign, the solution is unique. It is interesting to note that when this is not
true there exist cases for which there are two (but never more than two) solutions. Observe
that if there are five data points available, at least three must have the same sign and the
solution of (11) and (13) is unique. Since we are assuming the data are exact, there is at
least one solution, and we conclude:

THEOREM I

For an isovelocity receiver, the source track is uniquely determined up to rotations
and reflections (with respect to the receiver's coordinate system) by five Doppler data
points (satisfying fi t fj for i t j). Three data points suffice for this uniqueness if the
Doppler shifts are of the same sign.

4



3. MANEUVERING RECEIVER

Consider the case in which the receiver's track consists of two segments as in
Figure 1: i.e., at some point in time there is a single change in velocity from r to V.
Let AV = Vr - Vr.then the relative velocities V and V (V = V - Vr) satisfy

V-V1 =-AV ( 14)

We may use the techniques of the previous section to solve for IVI and IV' I along
their respective segments assuming there are at least three data points for each). The
triangle formed by IVI, IV' 1, and IAVI is determined by its three sides. Since AV is a known
vector, the orientation of this triangle is determined up to a reflection (see Figure 3 a). Tims.
given I-7 and IT '1. there are at most, two possibilities for V, = V + Vr. The velocity V com-s r s
pletes the determination of the source track since it specifies the orientation in Figure 2.

Now, assume that the conditions of Theorem I have been met for each of the two
segments. Then IVI and IV' are uniquely determined, and there are at most two solutions
(Figure 3a) for the source track. We shall demonstrate that there are at least two solutions.

k

I-V I
0

Figure 3. Illustration of possible solutions to Xv- V '- 7: where A 7. IVI1. and I¥'I are known: ,

(a) single maneuver, (b) two maneuvers.
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THEOREM 1

Let the receiver's track consist of at most two isovelocity segments. Then, given one
solution to the Doppler tracking problem, there exists a distinct second solution.

The proof relies on the following lemma:

LEMMA 1

Given two vectors-V and V-. there exists a (non-unique) vector Vo such that

V -V o and V2 Vo are parallel.

PROOF: The construction is illustrated in Figure 4a. A rigorous proof may be
supplied by the reader.

PROOF OF THEOREM 11: We now transform to a coordinate system moving with
velocity Vo such that Vr - Vo and V' - V are parallel. It is clear from Figure 4b that given

0 0 r 0
one solution (solid line), there exists a second solution (dotted line) obtained by a reflec-
tion in the receiver's track.

Vr Vo -v 
V

r1

V0

- v0

-S

(a) (b)

Figure 4. (a) Example of Lemma I; (b) Illustration of Theorem I1.
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Combining these results with those of the previous section, we have

THEOREM !11

Let the receiver's track consist ot two segments. each containing at least li C
Doppler points w ith I , I for i :;j. Then there exist exactly two solutions to the Doppler
tracking problem.

Suppose now that there are furthcr maneu~crs. Label the corresponding vclocit%
differences with a subscript i so that . vi  - v-r7 where r is the velocity of the initial
segment. It is easily seen from Figure 3b that if there exist at least two differences and

_vf which are not parallel. the Doppler-tracking solution must be unique ( because both
vo and its reflection idotted line in Figure 3b) in tile triangle containing IVk cannot match
their counterparts in the triangle containing ., ).

4. EXTENSION TO THREE DIMENSIONS

The previous results generalize directly to the three-dimensional case. Once again
we transfer to the receiver's coordinates. For ai' isovelocity receiver, the source track and
its perpendicular to the receiver at CPA determine a plane. In that plane the situation is
exactly that of Figure 2. only we nom have spherical symmetry. Thus. the solution is
indeterminate up to t%\o angles (ithe direction of R rather than one angle plus a reflection.
Note that the wording in Theorem I is such that it remains valid.

When the track has two seg'juents. Figure 3a is still \alid (since V, and V determine
a plane): however, it may be rotated about the vector AV Figure 5a). Thus, we find that
the set of solutions is unique up to a one parameter set of rotations.

In the case of three segments there are at most t\&o solutions. provided the condi-
tions of the previous section ark ,atisfied: i.e.. proxidcd there c\ist k and . ,ulh that
AV and AVare not parallel. This situation is illustrated in Fl-urv 51. A k and 2 deter-
mine the plane of the figure. The point Q. representing one solution, does not necessarily lie
in that plane. ['he c rmplete solution set is the intersection of t\o non-identical circles, which
can be at iost t\k points. If T is coplanar with 'k and Av (ic.. if the receiver's track lies
in a plane) there is onl\ one solution. If the receiver's track does not lie in a plane there is a
second solution, namel , the reficcion of Q in the Plane of the paper. Finally, for four or
more seglments the solution is iniqtc.

5. CONCLUSIONS

We have examined the solutionl set of the Doppler tracking problem for a fixed
velocity source and possibly maneuvering receiver. The problem as stated involved four
unknown parameters. For a sufficient number of data points three of these parameters are
determined by one isovelocity receivet track segment. Note that one of these parameters

7
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(a)l (b)

Figure 5. (a) lhree dimenmonal ,:ase. [he ;etor na\ he anj where onl tile ,icl.
(b) Example with two maneuers. The circular loci do not lie in the

same plane and incet at the %ingle po nt Q.

is relative source speed. A second segment. (i.e.. a maneuver), determines the fourth
parameter up to a rellection. In thre. dimensions. 1hree segments are required to achieve
uniqueness up to a single reflection.

In addition to the geometric insight provided, the analysis may be used to find a
starting point for the solution of the nonlinear equations typical of least-square fits to
Doppler data. In the case of a single maneuver, there are two solutions, a piece of informa-
tion which can be critical in solving nonlinear equations. Finally, we note that the construc-
tion in Section 2 reduces the problem for exact data to the simultaneous solution of two
quadratics which is much simpler than the original problem in four unknowns.



I
APPENDIX A

(,nen three Doppler points, we order them so that t3 < t-) < t1. Thus.
0 < p < I We shall refer to the situation in which all three At' are non-negative as
(ase I. Note that our s.onclusions concerning the solution set in this case will remain
valid for Ifi t< 0. 1.2.3 by symmetry. The remaining possibility, where one At' differs
in sign from the other tmo. shall be termed Case 2. Also. from symmetry, we may assume
without loss of generalit) in Case 2 that t2 < to < t I.

CASE I

Our assumuptio ns imnpl\ (see 3) and (7)) that

O y< x< I (A-1)

and (eq. (8))

1 < <3 0(A-2)

In addition (q ) Must be positive so that equations I 10) imply

x<I y< (A-3)

Equation (I I) is therefore a hyperbola with part of a single branch in the first quadrant
and similarly for equation (13) (since 0 < p < I). In fact it is easily shown that the situa-
tion is as illustrated in Figure A-I. There are thus at most two solutions. Note, however.
that the point x = 1, y = 1 is a solution of both equations. But this point does not
satisfy IA-1). Thus. there is a maximum of one solution.

CASE 2

In this case

x < y < 0 (A-4)

9
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EQ (11)

V

Figure A- 1. Plot of hyperbolae (11) and (13) tor Case 1.

and

Thisgivesrise to three subcases: (a) liaI> 1, 101I> 1;(b) IalI< 1, 10I> 1;and (c) I01< I1,
101 < 1. Note that in (b), equation ( 11) represents one quiadrant of an ellipse. Also, as in
Case 1, equations ( 10) put bounds on x and y since (q I ) must be positive. These three
subcases are pictured in Figure A-2. Note that there are at most two Solutions. Examples of'
zero, one, and two solutions may be constructed II

10



(a) (b) (C)

Figure A-2. Plot of equations (I I (solid line)I and I 3) (dashed line) tor Case 2.
(a) la I> 1. 1f31 > 1: (b) la I< I 11> 1'. (0) IQl I.LI 0 <I.
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